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We consider flow in a Hele-Shaw cell for which the upper plate moves up and down, making the fluid-fluid
interface be driven periodically. To study such a flow we employ a mode-coupling approach, which allows the
analytical assessment of important aspects about the stability and morphology of the evolving interface. At the
linear level, it is shown that both the amplitude and the frequency of the drive have a significant role in
determining the ultimate number of fingers formed. The influence of these factors on the mechanisms of finger
competition and finger tip behavior at the onset of nonlinear effects is also studied.

DOI: 10.1103/PhysRevE.80.026303 PACS number�s�: 47.15.gp, 47.15.km, 47.20.Ma, 47.54.�r

I. INTRODUCTION

The Saffman-Taylor problem �1� considers the confined
viscous flow between narrowly spaced parallel plates in
Hele-Shaw cell geometry �2�. This famous pattern-forming
problem involves the development of stable smooth fingers
in long rectangular channels, or branched fronts if the flow
takes place in open radial geometry �3�. Under such circum-
stances, the fluid motion is perfectly described by the well-
known Darcy’s law, which connects the fluid velocity to the
pressure gradient.

Much of the research in this area has examined the flow in
constant-gap spacing Hele-Shaw cells. However, a particu-
larly interesting variation in the traditional Saffman-Taylor
problem is the investigation of fingering instabilities in Hele-
Shaw cells presenting variable-gap width. This can be ac-
complished by lifting �or compressing� the upper plate while
the lower one remains at rest. To account for the variable-gap
motion of the upper plate, the usual divergence-free condi-
tion for the flow velocity is modified so that the pressure
field is no longer harmonic, and it satisfies a Poisson equa-
tion. These features differ significantly from the conventional
constant-gap Hele-Shaw situation, in which the pressure is
Laplacian and where a divergence-free condition holds. The
study of fingering pattern formation under time-dependent
gap conditions is very diverse, involving the lifting of New-
tonian �4�, non-Newtonian �5�, miscible �6�, and magnetic
fluids �7�. In addition to being an intrinsically important aca-
demic problem, the lifting Hele-Shaw cell system is also
intimately related with the practical problem of adhesion
�8–10�.

A curious but still largely unexplored gap-variable Hele-
Shaw situation has been examined in Ref. �11� that consid-
ered the case in which the upper cell plate oscillates sinusoi-
dally. A generalized effectively two-dimensional �2D�
Darcy’s law has been derived, taking into account part of the
inertial terms in the three-dimensional �3D� Navier-Stokes
equation, and a linear stability calculation was presented.
Experiments considering compressible flow situations have
also been performed, mostly by taking the inner �outer� fluid
as air �water�, revealing the formation irregular fingering

structures. The case in which both fluids are incompressible
has only been addressed by numerical solutions of the gov-
erning equations. Unfortunately, the inclusion of inertia re-
sulted in complicated linear stability expressions, which can-
not be solved in closed form. In fact, not even an explicit
expression for the linear dispersion relation of the system has
been found in Ref. �11�. This has obscured the possibility of
extracting more relevant information at linear and nonlinear
stages of the dynamics.

It turns out that the periodically driven Hele-Shaw prob-
lem originally proposed in Ref. �11� can be significantly sim-
plified if a related but still interesting case is considered in
which inertial effects are neglected. In the context of Hele-
Shaw flow problems, the role of inertia is quantified by a
Reynolds number �relative measure of inertial and viscous
forces�, which is directly proportional to the cell gap thick-
ness, and inversely proportional to the viscosity of the dis-
placed fluid. Since most experimental and theoretical studies
of the Saffman-Taylor instability deal with very thin cell
gaps and highly viscous oils, the vanishing Reynolds number
limit is readily validated �1–10�. By considering such a limit,
we show that both the linear stability analysis and the weakly
nonlinear dynamics of the system can be accessed so that a
number of useful results can be deduced analytically and in
closed form. In this work, we perform a systematic study of
the linear and early nonlinear behavior of the viscous finger-
ing patterns under a periodically driven excitation. Our ana-
lytical findings are rationalized by focusing on a mode-
coupling description of the Saffman-Taylor problem �12�
adapted to the variable-gap Hele-Shaw situation.

II. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

The geometry of the periodically driven Hele-Shaw cell
problem is sketched in Fig. 1. Consider a vibrating Hele-
Shaw cell of gap width b containing two immiscible incom-
pressible viscous fluids. The upper plate of the cell is al-
lowed to move up and down along the z axis, which is
perpendicular to the cell plates. The coordinate system is
defined in such a way that its origin is located at the center of
the cell. On the other hand, the lower plate is hold fixed at
z=0. The initial plate-plate distance is represented by b0 and
the initial fluid-fluid interface is circular, having radius R0.
The upper plate is sinusoidally driven as b�t�=b0*jme@df.ufpe.br
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+b1 sin��t�, where b1 denotes the oscillation amplitude, and
� is the angular frequency. The viscosities of the inner and
outer fluids are, respectively, denoted as �1 and �2, and the
surface tension between them is �. The perturbed interface is
described as R�� , t�=R�t�+��� , t�, where ��� , t�
=�n=−�

+� �n�t�exp�in�� represents the net interfacial perturba-
tion in polar coordinates �r ,�� with Fourier amplitudes �n�t�,
and discrete azimuthal wave numbers n. R=R�t� is the time-
dependent unperturbed radius of the fluid-fluid interface.
Note that conservation volume leads to the useful relation
R2b=R0

2b0.
Our analytical approach follows a theoretical model pro-

posed in Refs. �4,11,12�, and considers that the fluid flow is
governed by the continuity equation for incompressible flu-
ids

� · u j = 0, �1�

and by the Navier-Stokes equation

� j� �u j

�t
+ �u j · ��u j� = − �pj + � j�

2u j , �2�

where u j denotes the three-dimensional fluid velocity for
fluid j �where j=1,2�, � j represent the densities of the fluids,
and pj is the hydrodynamic pressure.

For the quasi-two-dimensional geometry of the Hele-
Shaw cell, one reduces the three-dimensional flow to an
equivalent two-dimensional one by averaging Eqs. �1� and
�2� over the direction perpendicular to the plates. By per-
forming the gap averaging of Eq. �1� one obtains a modified
incompressibility condition

� · v = −
ḃ�t�
b�t�

, �3�

where the overdot denotes total time derivative, � represents
the two-dimensional gradient operator in polar coordinates,
and v�r ,��=�0

bu�r ,� ,z�dz /b. By applying the same proce-
dure to Eq. �2�, and by neglecting the inertial terms as in
Refs. �1–10�, one obtains Darcy’s law

v j = −
b�t�2

12� j
� pj . �4�

We point out that the use of Eq. �4� implies that we assume
that the upper plate is not being lifted high enough to alter
the system being of large aspect ratio �R�t�	b�t��. A discus-
sion about the range of applicability of Darcy’s law approach
to our system is presented in the Appendix.

From Eq. �3� it can be verified that the equation satisfied
by the velocity potential 
 �v=−�
� differs from Laplace
equation valid in the usual constant-gap Hele-Shaw flow so
that here the velocity potential is not a harmonic function

�2
 j =
ḃ�t�
b�t�

. �5�

However, since the gap is only time dependent, the solution
of Poisson equation �5� can be conveniently expressed as


 j = 
 j
0 + �

n�0

 jn	R
n


r
n
 ��− 1�j

exp�in�� +
ḃr2

4b
, �6�

where the first two terms at the right-hand side represent the
solution of the Laplace equation for 
 �with 
 j

0 being inde-
pendent of r and ��, while the last term is the radial particu-
lar solution of Eq. �5�.

By rewriting Darcy’s law �4� in terms of the velocity po-
tential for each fluid, and then by subtracting the resulting
expressions, we obtain the equation of motion for the system
evaluated at the fluid-fluid interface

�A
�
1 + 
2�

2
+

�
1 − 
2�
2

� =
b2�p1 − p2�
12��1 + �2�

, �7�

where A= ��1−�2� / ��1+�2� is the viscosity contrast.
The problem is then specified by the usual pressure jump

boundary condition

p1 − p2 = �� , �8�

where � represents the interfacial curvature, plus the kine-
matic boundary condition, which states that the normal com-
ponents of each fluid’s velocity are continuous at the inter-
face

n · �
1 = n · �
2, �9�

where n=��r−R�� , t�� / 
��r−R�� , t��
 denotes the unit nor-
mal vector at the interface. Note that this last equation is

useful in expressing 
 j in terms of �n and �̇n.
To obtain an equation of motion for the perturbation am-

plitudes valid at linear and early nonlinear stages, first we
Fourier expand the velocity potentials in Eq. �6� and the
interfacial curvature � in Eq. �8� to second order in �. Then
we substitute all these expanded second-order expressions
back into Eq. �7�, and Fourier transform it to obtain a dimen-
sionless differential equation for the evolution of the system
�for n�0�
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FIG. 1. Diagrammatic representation of the periodically driven
flow in a variable-gap width Hele-Shaw cell.
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�̇n = ��n��n + �
n��0

�F�n,n���n��n−n� + G�n,n���̇n��n−n�� ,

�10�

where

��n� =
ḃ

2b
�A
n
 − 1� −

8b7/2

q3 
n
�n2 − 1� �11�

is the linear growth rate, and q=2R0 /b0 denotes the initial
aspect ratio.

The second-order mode-coupling terms are given by

F�n,n�� =
ḃ

b1/2�A
n
	sgn�nn�� −
1

2
� − 1�

−
16b4

q3 
n
�1 −
n�

2
�3n� + n�� , �12�

and

G�n,n�� = 2b1/2�A
n
�sgn�nn�� − 1� − 1
 . �13�

In Eq. �10� in-plane lengths, b�t�, and time are rescaled by
2R0, b0, and the characteristic time T= �12b0��1+�2�� /�, re-
spectively. The dimensionless gap thickness is written as
b�t�=1+b1 sin 
t, where the dimensionless angular fre-
quency parameter is represented as 
= �12�b0��1+�2�� /�.
Without loss of generality we focus on the high viscosity
contrast cases A=+1 and A=−1. We stress that from now on
we work with the dimensionless version of the equations.

It is worth pointing out that all dimensionless parameters
we use throughout this work are as close as possible to the
typical experimental quantities utilized in Ref. �11�. Al-
though the experimental value of the surface tension � is not
given in Ref. �11�, in evaluating the dimensionless parameter

, we assumed that �=O�10−3�−O�10−2� N /m. The fre-
quencies of the drive we utilized are 0� f �60 Hz, where
f =� /2�.

III. LINEAR REGIME: STABILITY ANALYSIS

We begin our study by using Eq. �11� to examine how the
development of interfacial instabilities at linear stages of the

pattern evolution could be modified by the influence of b1
and 
. At the linear level important information can be ex-
tracted from a quantity obtained by setting d��n� /dn=0,
yielding

nmax =�1

3
	1 +

ḃAq3

16b9/2� . �14�

A quantity closely related to nmax is the so-called fastest
growing mode n�, defined as the integer mode that produces
the largest growth rate. A given mode n is only the fastest
growing when ��n����n−1� and ��n����n+1�. This is the
mode that will tend to dominate during the early stages of the
pattern formation process and will perhaps determine the
typical number of fingers at later stages. So, by examining
the time evolution of nmax we can access how the typical
number of interfacial fingering structures vary as the upper
plate of the Hele-Shaw cell oscillates.

Figure 2 plots nmax as a function of time t for different
values of the oscillation amplitude b1 :0.10, 0.15, and 0.20.
In Fig. 2�a� the more viscous fluid is the inner one �A=+1�,
while in Fig. 2�b� the more viscous fluid is the outer fluid
�A=−1�. To better guide the eye regarding the stability of the

interface, the velocity of the upper plate ḃ=b1
 cos 
t is
also shown, represented by a black dashed curve �not in
scale�. Characteristic values q=200 and 
=0.02 have been
used in Fig. 2. Notice that there is nothing special about the
dimensionless time interval we used to plot Fig. 2 and other
figures in this work. After all, the functions involved in these
graphs are periodic so that the choice of the time interval is
quite arbitrary.

First, we examine the situation in which the more viscous
fluid is the inner one �Fig. 2�a��. The interfacial instability is
driven by the viscosity difference between the fluids, simi-
larly to the usual Saffman-Taylor problem. If the upper plate

is lifted �ḃ�0� the outer less viscous fluid penetrates the
inner more viscous one, resulting in an unstable interface
with a certain number of fingers. Conversely, if the upper

plate moves downward �ḃ�0� the interface is linearly stable
and no fingers are formed. This behavior can be easily veri-

fied by observing the black dashed curve representing ḃ: in-
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FIG. 2. nmax as a function of the dimensionless time t, for �a� A=+1, �b� A=−1, and different values of the dimensionless amplitude b1

�solid curves�. The black dashed curve illustrates as the velocity of the upper plate ḃ �not in scale� varies with t. Here q=200 and 

=0.02.
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creasingly larger �positive� velocities lead to a larger number
of fingers. Moreover, notice that the time variation in the

number of fingers is directly related to the acceleration b̈ of

the oscillatory plate. If the plate accelerates �ḃ and b̈ have the
same sign� the number of fingers tends to increase with time.
Nevertheless, if the plate decelerates nmax decreases with
time. The role of oscillation amplitude b1 is also evident: as
b1 is increased we observe that more and more fingers result

within the region in which ḃ�0. On the other hand, despite

the destabilizing action of b1, no fingers arise if ḃ�0.
Now we turn to the case in which the more viscous fluid

is the outer one �Fig. 2�b��. In contrast to what we have seen

in Fig. 2�a�, notice that now the fingers arise when ḃ�0.
Despite this fact, similarly to what occurred in Fig. 2�a� we
can see that larger b1 imply an increase in the number of
fingers.

A curious feature of Fig. 2�b� is the fact that the curves
describing nmax tend to deviate to the right as b1 is increased.
This is in contrast to the behavior depicted in Fig. 2�a� where
the curves move to the left. This asymmetry indicates that in
general nmax is not maximized at the point of maximum ve-
locity. But why do the nmax curves deviate toward shorter
�longer� times for A=+1 �A=−1� as b1 is increased? The
answer to this question can be obtained if we use Eq. �14� to
evaluate the time t=� at which nmax reaches its highest mag-
nitude

sin 
� =
1 − �1 + 63b1

2

7b1
. �15�

Note that for a given 
 the time � only depends on b1,
showing no dependence on A. This might sound as an appar-
ent contradiction since we know from Figs. 2�a� and 2�b� that
we have distinct behaviors for the deviation in nmax for A=
+1 and A=−1. In fact, there is no contradiction here. First,
notice from Eq. �15� that as b1→0, sin 
�→0, implying
that the highest magnitude of nmax occurs exactly at the time

in which the velocity of the plate ḃ is maximized. Note that
in this particular situation there is no asymmetry.

The asymmetry will arise for the cases involving larger
values of b1. Again from Eq. �15� we observe that for such
values of the oscillation amplitude sin 
��0. For A=+1 we
know that the fingers become unstable when sin 
t varies
from −1 to +1. So, as nmax is largest for negative values of
sin 
�, this situation would occur at shorter times, deviating
the curves in Fig. 2�a� to the left. On the other hand, for A
=−1, since Eq. �15� is independent of A we can say the value
of sin 
� remains unaltered. However, for A=−1 the fingers
become unstable when sin 
t varies from +1 to −1 so that
nmax is maximized at longer times, deviating the curves
shown in Fig. 2�b� to the right.

We also examined how nmax responds to changes in driv-
ing frequency 
 for a given value of amplitude b1. This
aspect is illustrated in Fig. 3, which plots nmax as a function
of time t, for A=−1, b1=0.15, and two different frequencies

=0.01 �black solid curves� and 
=0.02 �gray solid
curves�. The velocity curves corresponding to these two fre-
quencies present the same color labeling but are represented

by dashed curves. As expected, as A=−1 we only have fin-

gers when ḃ�0. It is also evident that the periodicity of nmax
is always the same as the periodicity of the plate oscillation.
We observe that higher frequencies result in the production
of a larger number of fingers. This can be readily justified by

inspecting Eq. �14�: larger 
 induces higher velocity ḃ,
which leads to increased nmax. Moreover, the time interval
for which the fingers show up at the interface is decreased
for larger values of the frequency 
. This is connected to the

increase in the plate’s acceleration b̈ as 
 is increased. We
note that similar conclusions would be reached if A=+1, the
only difference being that in this case the fingers would ap-
pear as deviated to the left.

Another important quantity can be extracted from the lin-
ear growth rate given by Eq. �11�. It refers to the critical
driving amplitude b1

crit, which is required to excite a given
mode n. This quantity is obtained by setting ��n�=0. The
response of b1

crit to frequency 
 is illustrated in Fig. 4 for
A=−1, three values of n=10,20,30, and two different initial
aspect ratios q=180,200. The time considered is t=200. This
graph works like a linearized phase portrait for the system.
For a given n, we clearly see that larger values of 
 lead to
smaller b1

crit. Therefore, we can say that higher 
 make it
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FIG. 3. nmax as a function of time t, for A=−1, b1=0.15, q
=200, and two values of the frequency: 
=0.01 �black solid
curves� and 
=0.02 �gray solid curves�. The dashed curves illus-

trate how the upper plate velocity ḃ �not in scale� varies with time
for each 
 taken.
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easier to excite a given interfacial mode. This reinforces the
destabilizing character of the frequency, as we have dis-
cussed in Fig. 2. On the other hand, as the solid curves lie
below the dashed ones, it is also evident that larger q
�smaller initial gap spacing� leads to more unstable situa-
tions. Note that the influence of q in determining the stability
of the interface is more significant for larger n. Once again, a
qualitatively similar behavior is observed if A=+1.

IV. WEAKLY NONLINEAR REGIME: GROWTH
MECHANISMS AND PATTERN MORPHOLOGY

It is well known that the basic growth mechanisms of the
viscous fingering problem are finger competition and finger
tip splitting or finger tip narrowing �2�. These mechanisms
characterize the morphology of the patterns and are intrinsi-
cally nonlinear. So, in order to systematically investigate the
main morphological features of the emerging fingering pat-
terns in periodically driven Hele-Shaw flows, one must go
beyond purely linear analysis. To do that we now turn our
attention to the weakly nonlinear flow stage, and focus on the
onset of nonlinear effects.

Despite the somewhat complicated nature of second-order
mode-coupling equation �10�, valuable information can be
extracted from it by examining the coupling of a small num-
ber of Fourier modes. To simplify our discussion we rewrite
Eq. �10� in terms of cosine and sine modes, where the cosine
an=�n+�−n and sine bn= i��n−�−n� amplitudes are real val-
ued. For consistent second-order expressions, we replace the
time derivative terms on the right-hand side of Eq. �10� as ȧn

and ḃn by ��n�an and ��n�bn, respectively. Without loss of
generality we choose the phase of the fundamental mode so
that an�0 and bn=0. Throughout our analysis we will as-
sume that the fundamental mode n coincides with the fastest
growing mode n�.

We begin by discussing finger competition events. We fol-
low Ref. �12� and consider finger length variability as a mea-
sure of the competition among fingers. Within our approach
the finger competition mechanism can be described by the
influence of a fundamental mode n, assuming n is even, on
the growth of its subharmonic mode n /2. The correctness
and accuracy of this simple finger competition mechanism

has been extensively tested by sophisticated numerical simu-
lations �13,14�. The equations of motion for the subharmonic
mode can be written as

ȧn/2 = ���n/2� + C�n�an
an/2, �16�

ḃn/2 = ���n/2� − C�n�an
bn/2, �17�

where the finger competition function is given by

C�n� =
1

2
�F	−

n

2
,
n

2
� + ��n/2�G	n

2
,−

n

2
�� . �18�

Observing Eqs. �16� and �17� we verify that C�n��0 in-
creases the growth of the cosine subharmonic an/2 while in-
hibiting growth of its sine subharmonic bn/2. The result is an
increased variability among the lengths of fingers of fluid 1
penetrating into viscous fluid 2. This effect describes finger
competition. Sine modes bn/2 would vary the lengths of fin-
gers of fluid 2 penetrating into fluid 1 but it is clear from Eq.
�17� that their growth is suppressed. Reversing the sign of
C�n� would exactly reverse these conclusions, such that
modes bn/2 would be favored over modes an/2. Regardless of
its sign, the magnitude of the function C�n� measures the
strength of the competition: increasingly larger values of
C�n� lead to enhanced finger competition.

By examining Fig. 5�a� we notice that C�n��0 if A=+1.
However, by inspecting Fig. 5�b� we observe that C�n��0 if
A=−1. This means that, regardless of the sign of the viscos-
ity contrast, we have increased competition among the fin-
gers of the less viscous fluid. At the same time, competition
among the fingers of the more viscous is restrained. Of
course, these results could not be guessed by purely linear
analysis. Moreover, it is also clear that the strength of the
competition is considerably sensitive to changes on the os-
cillation amplitude: larger values of b1 lead to increasingly
stronger finger competition. Finally, we can also verify both
for A=+1 and A=−1 that there exists a trend to enhanced
competition for larger values of the upper plate velocity. We
have also analyzed the influence of the frequency 
 �for a
fixed value of b1� and found that finger competition increases
significantly for larger values of 
.

Similarly to what we have observed in Figs. 2 and 3, in
Fig. 5 we see that the time for which C�n� takes a minimum
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FIG. 5. Behavior of the finger competition function C�n� as time is varied for the cases �a� A=+1 and �b� A=−1. Three different values

of the oscillation amplitudes b1 are considered �solid curves�, q=200, and 
=0.02. The upper plate velocity ḃ �not in scale� is illustrated by
the dashed curve.

INTERFACIAL INSTABILITIES IN PERIODICALLY… PHYSICAL REVIEW E 80, 026303 �2009�

026303-5



or a maximum value is deviated from the time when the
upper plate velocity takes maximum or minimum values. In
order to calculate either the maximum or the minimum of the
finger competition function �which is a function of n=nmax
and t�, we have that

dC�nmax,t�
dt

=
�C�nmax,t�

�t
+

�C

�nmax

dnmax

dt
= 0. �19�

We have verified numerically that �C /�nmax is always non-
zero as time processes, and its sign remains unchanged:
�C /�nmax�0 and C�n��0 if A=+1, and �C /�nmax�0 and
C�n��0 if A=−1. Therefore, an increase in the number of
fingers �dnmax /dt�0� produces an increase in the magnitude
of the competition. Likewise, a decrease in nmax results in a
diminished magnitude of C�n�. This leads to a similar devia-
tion in C�n� as the one that occurred in nmax. The influence of
the term �C /�t is to inhibit this deviation. A similar behavior
will also be observed in Fig. 6.

We close this section by investigating finger tip behavior.
Finger tip-splitting and finger tip-narrowing phenomena are
described by considering the influence of a fundamental
mode n on the growth of its harmonic 2n �12�. The equations
of motion for the harmonic mode are

ȧ2n = ��2n�a2n + T�2n,n�an
2, �20�

ḃ2n = ��2n�b2n, �21�

where the finger tip function is defined as

T�2n,n� =
1

2
�F�2n,n� + ��n�G�2n,n�� . �22�

Since the growth of the sine mode b2n is uninfluenced by an
and does not present second-order couplings, we focus on
the growth of the cosine mode a2n as given by Eq. �20�. It
shows that the presence of the fundamental mode n forces
growth of the harmonic mode 2n. The function T�2n ,n� acts
like a driving force and its sign dictates finger tip behavior. If
T�2n ,n��0, a2n is driven negative, the sign that leads to
finger tip broadening and finger tip splitting. Conversely, if
T�2n ,n��0 growth of a2n�0 would be favored, leading to
outward-pointing finger tip narrowing.

Figure 6 depicts how the function T�2n ,n� varies with t,
for �a� A=+1, and �b� A=−1. All the remaining physical
parameters are exactly equal to the ones used in Fig. 5. It is
evident that, independently of the value of A, T�2n ,n��0.
Therefore, one should not expect the existence of finger tip
splitting in this periodically driven Hele-Shaw flow. Instead,
we should observe fingers that should appear relatively nar-
row at their tips. Since this mechanism refers to the outward
moving fingers of the inner fluid, in Fig. 6�a� the fingers
affected are the ones of the more viscous fluid, whereas in
Fig. 6�b� the fingers that become narrower are those of the
less viscous fluid. Finally, note that this finger tip behavior is
intensified for larger oscillation amplitudes.

V. CONCLUSION

We have studied the linear stability and the weakly non-
linear dynamics of a fluid-fluid interface, which is driven
periodically through the vibration of a Hele-Shaw cell’s up-
per plate. Our study was motivated by a previous investiga-
tion performed by Rauseo �11� who analyzed a general case
in which inertial contributions have been taken into account.
Regrettably, the inclusion of such inertial effects defies the
analytical treatment of the problem, even at early linear
stages of the interface evolution. By neglecting the trouble-
some inertial contributions we have shown that the problem
could be approached analytically through a mode-coupling
theory. In that way we were able to carry out a more detailed
stability analysis than presented for the more general case
studied in �11�. In addition, key morphological properties of
the interface have also been probed at the onset of nonlinear
effects.

At the linear level, we have verified that both the oscilla-
tion amplitude b1 and the frequency of the drive 
 have
important roles in determining the stability of the interface,
particularly the number of emerging interfacial fingers. In-
trinsically nonlinear growth mechanisms related to finger
competition and finger tip behavior have also been exam-
ined. We have detected an increased competition among the
fingers of the less viscous fluid, independently of the value of
the viscosity contrast A. In addition, enhanced competition is
favored for larger b1 and 
. Finally, our model predicts the
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FIG. 6. Behavior of the finger tip function T�2n ,n� as time is varied for the cases �a� A=+1 and �b� A=−1. Three different values of the

oscillation amplitudes b1 are considered �solid curves�, q=200, and 
=0.02. The upper plate velocity ḃ �not in scale� is illustrated by the
dashed curve.
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suppression of finger tip-splitting phenomena in such peri-
odically driven flows.

Unfortunately, a quantitative comparison between our the-
oretical results and the compressible flow experiments per-
formed in Ref. �11� was not possible, mostly due to the lack
of detailed experimental data for the incompressible flow
situation we have studied. However, we hope that experi-
mentalists will feel motivated to perform a more systematic
comparison in the future. In the laboratory the periodically
driven system we examined here provides a convenient con-
trollable manner of investigating pattern formation processes
by varying, for instance, the frequency or amplitude of os-
cillation.
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APPENDIX: RANGE OF APPLICABILITY OF DARCY’S
LAW APPROACH

This Appendix presents a discussion about the validity of
our Darcy’s law formulation for periodically driven Hele-
Shaw flows. We begin by following Ref. �11�, which presents
a more general form for Darcy’s law equation �4� �see Eq. �4�
in Ref. �11�
 written for a given fluid

��
�v

�t
+ �

ḃ�t�
b�t�

v +
12�

b�t�2v� = − �p . �A1�

In contrast to the majority of studies in Hele-Shaw flows
�1–10� the gap-averaged equation �A1� includes part of the
inertial terms originally present in Navier-Stokes equation
�2�. In deriving Eq. �A1� Rauseo neglected the advective
inertial term �u ·��u, but kept the unsteady inertial term
�u /�t during the gap-averaging process. The two initial
terms on the left-hand side of Eq. �A1� are originated from
the unsteady inertial contribution. For a full derivation and
discussion of Eq. �A1� we refer the reader to Rauseo’s work
�11�.

By using the same rescaling we have utilized in our work,
Eq. �A1� can be rewritten in a dimensionless form as

Re



� �v

�t
+

ḃ�t�
b�t�

v� +
12

b�t�2v = − �p , �A2�

where the important dimensionless parameter

Re =
�b0

2�

�
�A3�

represents a Reynolds number, and 
= �12�b0�� /�. The
Reynolds number conveniently works as a controlling pa-
rameter that regulates the strength of the inertial effects.

By using Eq. �A2� we obtain the following condition for
the neglect of the inertial effects

�Re



� �v

�t
+

ḃ�t�
b�t�

v�� � � 12

b�t�2v� . �A4�

An estimate for the condition of validity �Eq. �A4�� can be
obtained by considering the evolution of a purely circular
domain and the incompressible nature of the flow as given
by Eq. �3�, yielding a relation between the upper plate and
the interface velocities

v = Ṙr̂ = −
ḃ�t�R�t�

2b�t�
r̂ , �A5�

where r̂ denotes the unit vector along the radial direction.
This allows us to rewrite Eq. �A4� as

Re



� b̈�t�

ḃ�t�
−

ḃ�t�
2b�t�� � � 12

b�t�2� , �A6�

leading to the validity condition of our study

��1 + b1 sin 
t��2 sin 
t + b1�1 + sin2 
t�
24 cos 
t

�� �
1

Re
.

�A7�

As long as this condition holds, we can safely neglect the
inertial contributions in Eq. �A1� so that Darcy’s law equa-
tion �4� perfectly describes the periodically driven flow we
study. Notice that condition �A7� is not valid near the turning

points, where the upper plate velocity vanishes �ḃ�cos 
t
=0�. However, this is not a serious limitation since the sys-

tem is stable around the points where ḃ→0 �see for instance
Fig. 2�.

Once a particular value of b1 is considered, one should
use Eq. �A7� to establish what range of values for Re can be
used in order to validate Darcy’s law formulation. The pa-
rameter 
 does not have a direct role since it appears in the
argument of bounded periodic functions. In agreement with
the studies performed in Refs. �1–10� we have verified that
condition �A7� is perfectly valid in the low Reynolds number
limit ��O�10−2��, when the typical values of the dimension-
less amplitude are used �0.02�b1�0.2� �11�. However, if
inertial effects are important, as in the case of Ref. �11� we
obtain a much larger Reynolds number �15�Re�60�, and
obviously Eq. �A7� no longer holds.

Moreover, observe that the value of the dimensional fre-
quency of oscillation � cannot be arbitrarily large. This can
be verified by inspecting Eq. �A7�: if � is increased, both Re
and 
 assume larger values. As a result the right-hand side
of Eq. �A7� will become increasingly smaller. On the other
hand, the maximum value of the left-hand side will remain
unchanged. In this case, condition �A7� would be eventually
violated. Again, we stress that the key parameters to establish
the validity of condition �A7� are Re and b1.

Finally, as already pointed out in Sec. II our Darcy’s law
approach requires the system to be of large aspect ratio,
meaning that q�b�t� /R�t�, where b�t� /R�t��1. In this work,
as in Ref. �11� we use a value of q on the order of 102, which
comfortably fulfills the large aspect ratio requirement.
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